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ABSTRACT OF THESIS

A CAMERA-BASED ENERGY RELAXATION FRAMEWORK TO MINIMIZE
COLOR ARTIFACTS IN A PROJECTED DISPLAY

We introduce a technique to automatically correct color inconsistencies in a display
composed of one or more digital light projectors (DLP). The method is agnostic to the
source of error and can detect and address color problems from a number of sources.
Examples include inter- and intra-projector color differences, display surface mark-
ings, and environmental lighting differences on the display. In contrast to methods
that discover and map all colors into the greatest common color space, we minimize
local color discontinuities to create color seamlessness while remaining tolerant to
significant color error. The technique makes use of a commodity camera and high-
dynamic range sensing to measure color gamuts at many different spatial locations.
A differentiable energy function is defined that combines both a smoothness and data
term. This energy function is globally minimized through the successive application
of projective warps defined using gradient descent. After convergence the warps can
be applied at runtime to minimize color defects in the display. The framework is
demonstrated on displays that suffer from several sources of color error.

KEYWORDS: Computer Vision, Projector-Camera Systems, Immersive Displays,
Color, Camera-based Color Correction
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Chapter 1

Introduction

Over the past fifteen years, visualization has undergone a revolution due to advances

in projection display technology. Projectors have become more convenient and ac-

cessible in nearly every possible way. They have become cheaper and smaller. They

consume less power than before and their resolution has increased. Large-format

displays composed of several overlapping projectors have become possible because of

these advances and allow for resolutions of several million pixels – far greater than

the typical desktop display.

With the advantages of projection displays come challenges, however. Projectors

were designed to project onto planar surfaces that are perpendicular to the optical

axis of the projector, so curved or off-axis surfaces warp the projected imagery. We

need to discover the geometry of the surface we are projecting onto and apply the

appropriate inverse pre-warp to our framebuffer in order to make the output look

correct to the viewer. If we allow for arbitrary overlap of projector frustums, we

also must account for increased brightness in regions of overlap. To create a truly

flexible system, we would also like to allow for a heterogeneous group of projectors to

make up our display. This requires discovering and attenuating parameters related

to intensity and chrominance, since projectors from different manufacturers could be

quite different. Even if all of the projectors in a display system are the same make and

model, manufacturing anomalies or differently aged bulbs/lamps in the projectors can

cause inter-projector variation. Intra-projector variation can exist, as well, possibly

due to degradation of the display mechanism over time.

Unlike desktop displays, which have tightly-coupled pixels which are geometrically

well-aligned and are nearly identical in color and intensity properties by comparison,

1
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large-format projection displays require either physical solutions or software solutions

to realize the same uniformity that desktop display systems exhibit. While manually

adjusting projector location/pose for alignment purposes and manually reconfiguring

projector color/intensity parameters can achieve a visually pleasing display, we desire

automatic methods for overcoming alignment and color/intensity problems.

Cameras can provide important feedback about the geometry, color, and intensity

of a projector-based display. New algorithms that exploit the presence of a camera in

a display environment have removed many of the obstacles to deploying digital light

projectors in novel environments and applications. In particular, researchers are now

exploring large tiled displays that are geometrically aligned on both flat [8] , and

curved surfaces [16], projection on real-world objects [17], and even steerable displays

than can appear on many surfaces within an environment [14]. These displays have

opened the door to ad-hoc deployment of large displays, uncontrolled conditions, and

display mobility. At the same time, however, these displays all suffer from potentially

the same problem: lack of color uniformity. Multi-projector displays are composed of

a number of projectors whose color characteristics can vary greatly and whose ad-hoc

projection on surfaces with color and textures leads to an image that can contain

significant artifacts. Furthermore, environmental lighting conditions can vary across

the display surface leading to color change in the observed image.

This paper describes a framework to address color uniformity that operates on

the observed color gamuts at many different spatial locations within an observing

camera. In contrast to previous approaches that compute the greatest common color

space of a display and then map each pixel into that color space, this framework is

intended to achieve local color smoothness across the display in the presence of color

discontinuities without globally reducing the color dynamic range across the entire

display.

For example, Figure 1.1 shows a display surface that contains a yellow marking

2
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(a) (b)

Figure 1.1: A color aberration on a projected display surface. A yellow light source
falls on the display surface and significantly corrupts a region on the display. (a)
full image. (b) closeup of aberration. The method must detect and correct these
aberrations without reducing the color range of the entire image.

caused by focused light (indicated by a green circle). Uncorrected projection onto the

display results in discontinuities in the color space at the edge of the surface marking

and a color artifact. The framework presented here minimizes these local disconti-

nuities within a global energy minimization framework that also seeks to keep the

observable color space of the display close to the full dynamic range of the contribut-

ing projectors. Focused aberrations such as this one make up the one of the worst

class of aberrations for a human viewing the display due to the abrupt discontinuity

in color. This class of aberrations also presents great difficulty to the final result of

color-correcting methods which reduce the entire display’s color space to a common

one – a single aberration, perhaps on the periphery of the display, will cause the

entirety of the display to lose dynamic range, drastically in some cases. Our method

doesn’t suffer from this problem, as it attempts to smooth color spaces only in the

region of the aberration, leaving regions farther away with their original, full dynamic

range.

Another class of aberrations that is difficult to deal with is that of surface mark-

3
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ings. This is very similar to focused light in the way that a color correction system

would attempt to correct the problem. Again, systems that try to find a global com-

mon color space will reduce the dynamic range of the entire display perhaps to correct

one small defect. Our system, just as with focused light, can correct in the region of

aberration and leave the dynamic range intact elsewhere.

Aberrations caused by ambient light are often easier to deal with due to their

more subtle nature, which often has a natural smoothness or fall-off. Nevertheless,

in situations where the ambient light of a display system cannot be controlled, it is

advantageous to be able to correct for it. In a system that seeks a common color

space, ceiling lights, for example, might cause the display near the floor to have a

smaller dynamic range. Our system segments the display into regions with color

spaces that become gradually larger as you move from the aberrations near the top

of the display to the floor where there are no aberrations. Thus, the gamuts remain

unchanged.

In particular, we introduce an energy function that combines smoothness and data

terms into the global energy function. The smoothness term measures how closely a

particular gamut resembles its spatial neighbors, while the data term measures the

distance of the current gamut to the maximum gamut for that region. Using standard

relaxation as the global optimizer, projective transformations are successively applied

to existing gamuts to move along the energy surface defined by this global error

function. This is accomplished by computing the gradient direction of the error

function with respect to the parameters of the projective transformation and then

applying gradient descent at each iteration of the relaxation algorithm.

The main contributions of this thesis are threefold:

1. Measuring the non-linear output response (gamma) of a projector using a cam-

era

2. Measuring the color gamut across many regions of a projector using a camera

4
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3. Correcting aberrations in a projection display by finding a set of gamut trans-

formations that minimize an energy function chosen for a specific purpose with

no assumed physical model of the elements of the system nor model of the

environment

Because our technique for correcting the color in a display relies on linear trans-

formations of color gamuts, we need the output response of the projector to be linear.

We model the nonlinear response of each channel (R, G, B) of the projector as a power

function with a single parameter, gamma. Normally this would require a radiometer

and a user in the loop taking several measurements per channel. This would require

the user informing the system that the measurement had been taken and that it is OK

to display the next image to measure. Our method is fully automatic, however, and

as soon as a measurement is taken with the camera, the next is displayed, allowing

for rapid measurement and thus estimation of the gamma parameter of the power

function describing the output response non-linearity.

Another aspect of our system that normally would require a radiometer is that

of measuring the color gamut of the regions in the display. Taking measurements for

the nonlinear response discussed above is tedious because of the need to take several

measurements for many input/output pairs. This is multiplied greatly by the need

for the operator of the radiometer to accurately place the radiometer’s location on the

display surface for several input/output pairs. With a digital camera we are able to

measure the color gamut of the projector at a granularity of 2x2 pixel regions without

any trouble and down to the single pixel in some cases.

Finally, we build upon the aforementioned pieces to correct the color of the dis-

play by minimizing a user-supplied energy function. This function is chosen by the

user for his or her specific purposes related to correcting the color properties of the

projection display. In addition to the energy function, several other parameters in

the system can be specified by the user. One of the most important is that of neigh-

5
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borhood size. In contrast to other researchers’ methods to correct color problems in

displays, ours was intended to be a local solution, as evidenced by our neighborhood

parameter. This allows us, among other things, to preserve dynamic range in areas of

the display without aberrations while improving the color characteristics of portions

of the display. By varying the neighborhood size parameter and with careful choice

of energy function, we can model several global approaches to color correction similar

to those of other researchers.

Copyright c© Nathaniel Sanders 2007
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Chapter 2

Previous Work

The problems of color in projected displays are well known and several approaches

to measurement and correction have already been introduced. Each of these ap-

proaches has focused on correcting a different source of error and, as a result, each

has approached the problem quite differently.

The need for color correctness in projection displays goes back to the CAVE [3]

virtual reality system in 1993. The original CAVE was a walk-in immersive projection

display with 3 rear-projection screens for walls and a front-projected floor. The system

allowed for both head and hand tracking, controllable sound, and also produced stereo

visuals. One projector is used for each wall with manual edge-alignment so there is

no overlap of projectors. The implementors of the CAVE speak of the need for not

compromising color quality as compared to a workstation display, but did not focus

on color due to the many other problems they had to solve in constructing such an

ambitious and novel system.

Another early project that mentions color correctness is The Office of the Future

[18]. The Office of the Future was an umbrella for several projects that sought to

achieve compelling shared telepresence systems using cameras, projectors, and net-

working. Camera clients employing real-time computer vision techniques dynamically

extracted per-pixel depth and reflectance maps of surfaces in the scene. This informa-

tion forms a model that can be used for a variety of tasks. Changes in the surfaces can

be detected, such as movement of an object or occlusion of a surface, etc. The model

of the scene can also be sent over a network so that a user in a distant location can

see a rendering of the original user’s workspace. The model of the surface also allows

projecting onto the surface accurately. It is this task in which color correctness comes

7
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into play. Because The Office of the Future used casually-aligned overlapping pro-

jectors, spatial transitions between projectors include a region where approximately

double (or higher, in the case of more than 2 projectors) brightness occurs. Because

of this, alpha masks have to be used on a per-projector basis to attenutate intensity.

This approach does not deal with the colors of surfaces in the workspace environment,

but it was a solid step forward in color correctness in projection displays.

2.1 Non-camera-based Methods

Although a camera is a preferable means of sensing parameters of a display due

to its speed and ease of use, early attempts to understand and correct large format

projection displays drew methods from the Color Science community and used special-

purpose devices such as colorimeters and spectroradiometers. Using such a device

has a speed/quality trade-off in that we require the user to make coarse granularity

high-quality measurements. Methods which use one of these special-purpose color-

measuring devices instead of a camera are practical only when assuming little or

no intra-projector variation in color and intensity and also become tedious if color

calibration is frequently required.

Majumder [11] was the first to attempt correcting chrominance in addition to

intensity. This work employed per-channel, per-projector color maps. Crosstalk be-

tween channels and intra-projector color differences are not handled in this work. Also

the use of a spectroradiometer as the measuring device limits the frequency/speed

with which calibration can be performed because a human is required to control the

device. This work was important as a first attempt and as a precursor to Luminance

Attenutation Maps [12] discussed later.

The first comprehensive analysis of inter-projector color balancing in projection

displays was by Stone [21, 20]. Several later papers build on this analysis. This

method first uses a spectroradiometer or colorimeter to measure the gamut of each

8
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projector in the multi-projector display. A common gamut for the display can be

found from the measured gamuts. Stone’s method is more complicated than the

more straightforward method of simply computing the intersection of all gamuts.

Instead, this intersection idea is tempered by colorimetric principles. Sources of

intra-projector color variation are also analyzed, but only physical solutions for this

problem are provided.

In work that is quite similar to our own, Wallace [24] corrects color problems

due to differences among projectors in a multi-projector display. The approach also

utilizes projective warps in order to align gamuts in different regions on the display.

However, the method operates at the level of an entire projector so that it is feasible

to measure the mean color response of each gamut vertex by hand using a colorimeter.

Furthermore, all gamuts are aligned to a single base gamut or the greatest common

gamut in the display. While the coarse granularity of this method allows computations

to be extremely fast, it also means that it cannot effectively treat intra-projector color

problems, display surface markings, focused light, or ambient light. We measure and

adjust gamuts on regions that can be as small as a camera pixel and smooth color

artifacts without enforcing a greatest common gamut constraint.

2.2 Camera-based Methods

2.2.1 Global Methods

Majumder [12] later considered the problem of inter-projector and intra-projector

luminance variation using per-pixel attenuation maps. The method uses a camera to

measure intensity at each camera pixel and then applies a luminance attenuation map

(LAM) to all projector pixels so that they are of uniform brightness. The method

is similar to our own in that the technique operates in the camera space and does

not necessarily distinguish between different projectors and overlap regions. However,

this early work focused on intensity only. Also, this solution is a global method in

9
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that it seeks a single color space for the entire display through several color space

intersections. Global methods such as this suffer from the problem of loss of dynamic

range throughout the entire display when only a small portion of the display had low

dynamic range before color correction.

Later work [10] introduced color and followed a similar approach to reducing

each color space into one that is globally common. An important extension, however,

allows color spaces to differ insofar as their differences are unobservable with respect

to a simple but effective model of human perception [9]. The framework here differs in

that we minimize a global energy with emphasis on local color smoothness. However,

we expect to explore how the work of Majumder can be integrated with this framework

by formulating LAM similarity measures as a differentiable energy function.

2.2.2 Local Methods

Correction of projected images that fall on non-uniformly colored or textured sur-

faces has also been addressed by Nayar [13]. The approach introduces a simplified

parametric model of both the projection and image formation process and then re-

covers the parameters of the model in a calibration stage. Once modeled, incorrect

color responses in the camera (i.e. due to unexpected color on the display) can be

attenuated. The method works quite well and has been shown to remove a majority

of artifacts due to surface markings. Because the emphasis of the work is in detect-

ing and removing problems due to surface markings, errors due to other sources (i.e.

color problems in the projector or ambient illumination) are not taken into account.

As a result, extending this approach to more complex parametric models involving

multiple projectors, ambient illumination, etc.. is perhaps difficult and would require

more sophisticated color calibration.

Related to these efforts are techniques that attempt to predict the intensity and

color in a camera given the pixel values to be projected by one or more projectors.

10
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These researchers are typically interested in accurate prediction of the scene in order

to perform three-dimensional reconstruction [25], detection and removal of shadows

[6, 22], [5], and other vision tasks in the presence of changing illumination [7,

19]. Although these techniques typically do not involve modification of the projected

colors, they do involve similarities to our work.

Copyright c© Nathaniel Sanders 2007
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Chapter 3

Method

The framework is composed of three different components. First, the system is cali-

brated geometrically and the radiometric response of each projector is linearized. A

second stage partitions the camera image into a set of small regions and measures the

observable gamut corresponding to each region by rendering color calibration images

through the display projectors. Finally, a relaxation stage minimizes an energy term

that involves a smoothness term as well as a term that minimizes the motion of the

gamuts.

The framework minimizes color artifacts as measured in the camera. In this way,

the framework is agnostic to the actual source of error and is quite general. However,

this generality comes with a price. The dynamic range of a typical color camera is

typically far lower than that of a digital light projector. To address this, high-dynamic

range images are synthesized from a set of camera images at different apertures [4].

These images are able to capture a very large dynamic range that encompasses the

projected display. For the work described in the following sections, each image refers

to a 64-bit floating point image that is used for processing.

Because the method is completely automatic and does not make use of an absolute

measure of color (i.e. with a colorimeter [24]), the framework cannot be used to

correct the display. Instead, the goal is to minimize the perceptual artifacts due to

color inconsistencies. A color correction can be applied to the input image before the

relaxer runs. This can be achieved by allowing a user to adjust color parameters.

Each of the framework’s components is discussed in the sections below. Following

that, issues related to runtime manipulation of framebuffer color values are discussed

and an algorithm is introduced.

12
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3.1 Preliminary Display Calibration

An invertible mapping between each projector pixel and a corresponding camera pixel

must be known before color is addressed. Recovering this information has been the

subject of significant previous work and is not the focus here [23, 16, 26]. Although

the framework will support a variety of display surface shapes, we assume a flat surface

and recover relative geometry using homography trees [2]. Radial distortion is also

estimated at this stage using Jean-Yves Bouguet’s Camera Calibration Toolbox for

Matlab [1].

In addition to requiring geometric information, our approach assumes that dif-

ferent color gamuts in the display can be brought into alignment through projective

warps. Because the output intensity of each channel of a typical projector is a nonlin-

ear function of the value in the framebuffer, this nonlinearity must be estimated and

removed before color processing. For the results here, we assume that the response of

channel C can be modeled as a standard gamma function that maps input intensities

between 0..255 to output radiance rc of the form:

rc = Ic
γc

(3.1)

This is only an approximation of the more complex nonlinear nature of the image

formation and projection process but serves to model the most significant source of

nonlinearity in each projector. For example, in a typical DLP projector additional

nonlinearities can be introduced at high intensities. Of course, without a radiometer,

we cannot directly access the corresponding intensity and radiance pair, although

we have turned off ”white enhancement” in the DLP projector. Instead, we capture

13
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correspondences as follows. Each projector is divided into distinct regions, R1 and

R2. Region R2 is filled with a fixed intensity I, while region R1 is then filled with

a dithering pattern where 50% of its pixels are of some intensity r= Ik and 50%

of its pixels are intensity level 0. The camera then measures the average observed

intensity in two corresponding camera regions C1 and C2. This process is repeated

while changing the intensity values in R2 for all intensity values ranging from 0-255.

The closest average intensities from the two regions are selected as a correspondence

pair (r, I). This process is again repeated by changing the intensity value in R2 until

a sufficient number of correspondences have been measured. For the results shown

here, 20 corresponding samples for each channel were measured.

Equation 3.1 is then fit to these corresponding measurements to recover a per-

channel gamma value in each projector of the display. This gamma response is re-

moved in subsequent stages by inverting Equation 3.1 in the graphics hardware. The

drivers for our nVidia graphics cards allow us to invert the gamma curve so that we

have a linearized response.

3.2 Measuring the Gamut

The camera image is first partitioned into a set of N regions, labeled P1, , Pi ,PN .

Regions can range in size from a single pixel to 1/4 of the image size. Color relaxation

operates on an energy function that involves gamut differences between regions and

the choice of region size will impact the results. Region size should be small enough

to detect and correct the expected size of color artifacts on the display but should be

balanced against the computational cost of additional regions. For the results shown

here regions of size 16 camera pixels were typically used.

For each region Pi, the corresponding gamut, Gi, is computed by displaying a

fullscreen constant-color image for each vertex of the RGB color cube. Each of the

eight images are iteratively displayed by all projectors in the display. As each image
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is displayed, camera pixels in region Pi are averaged to compute a value for a cor-

responding vertex on the region’s gamut. Because the geometric mapping between

camera pixels and projector pixels is known, the pixels corresponding to region Pi

that do not correspond to any projector can be eliminated from processing and do

not contribute to the gamut measurement.

Figure 3.1: Eight input images used to compute the RGB color gamut for each region
in the camera space (top two rows). Grid lines are drawn on the aberration to show
regions. The measured gamuts corresponding to region A (within the aberration)
and region B (partly without the problem region) are also shown. Note that gamut A
spans a smaller region on the Red plane (bottom of color space) and has a significantly
smaller volume than gamuts outside of the aberration.

Figure 3.1 depicts the eight input images for a display that contains a yellow spot.

The measured gamuts corresponding to Regions A and B are shown in Figure 3.1.

Notice that the dynamic range, particularly on the red and green axes of Gamut

A is reduced due to the display artifact, while the nearby gamut encompasses a wider

range of values. It is these differences that lead to perceptual color artifacts on
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the display and, while the projector’s dynamic range cannot be increased, the two

gamuts should be brought into closer alignment in order to reduce these artifacts.

This motivates our choice of energy function described in the next section.

3.3 A Gamut Difference Energy Function

Our definition of a gamut energy function is based on two observations. First, we hope

to remove significant artifacts that arise from neighboring regions in the display that

have different color characteristics rather than correct the display towards some abso-

lute color space. Examples of these problems include the observable color boundary

between two projectors that have different color characteristics or sharp color edges

that result when a surface marking influences one region on the display and not its

neighbors. Secondly, although there is a theoretically “correct” color space, projector

gamuts may only partially overlap that space. Approaches that intersect the gamuts

with this global color space can be overly restrictive in many cases (such as dramatic

surface markings) and result in a very-low dynamic range display. Instead, our energy

measure emphasizes local differences in an attempt to minimize artifacts even in the

most challenging conditions.

While we propose a particular form of the energy function here, other energy

functions can be used. In fact, we encourage further exploration of energy terms

that are more directly inspired by studies of human perception [9], redefine neighbor

relations to include inter-reflection artifacts, or utilize a different distance metric

between gamuts.

Our energy function is a combination of a data term and a smoothness term.

These two terms balance the energy that results from deforming a gamut from its

starting shape (the data term) with the energy resulting from the distance of that

gamut from the mean of its neighbors (the smoothness term).

The data term energy between the measured gamut Gk and a deformed (proposal)
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gamut ∆G, for region k, is given by:

D(Gk, ∆Gk) =
∑

vi∈G ‖vi −∆vi‖2

(3.2)

where vi represents the RGB 3-vector for gamut vertex i and ∆vi is the corre-

sponding vertex on the proposal gamut.

The smoothness term is defined using a neighborhood relation N over camera

regions. For the work here, neighborhoods are defined as the eight-connected regions

within a region distance B from the region Pi. All regions within this distance are

used to compute a mean gamut for that region k.

GM
k =

∑
Pn∈N(Pk)

λnGn∑
n

λn
, λk = ( 1√

2πσ2
e
−(xn−xk)

2σ2 )

(3.3)

Here N(Pk) is the neighborhood relation on region Pk, Gn is the gamut corre-

sponding to region Pn, and λn is the combined weighting coefficient that takes into

account the distance between region centers xn and xk.

The smoothness energy for proposal gamut, ∆G, is simply the distance of the

proposal to its neighborhood mean. This smoothness term is combined with the data

into the energy function that describes the error for a particular proposal gamut,

E(∆Gk) = (1− α)D(Gk
M , ∆Gk) + αD(Gk, ∆Gk)

17
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(3.4)

where α defines the contribution of the data and smoothness terms to the overall

energy function. For the results shown here, alpha values ranging from 0.05 to 0.6

were used.

3.4 Relaxation

Given an energy function that corresponds to the amount of error contained in a

particular region, one must define how different gamuts can be proposed in order to

minimize this error. For the work here, we utilize a projective transform that maps

the initial gamut for region k into a proposal gamut for that region, Gk = TGk.

The projective transform allows significant distortion between gamuts while limiting

the number of parameters to 15 that ultimately have to be discovered during the

relaxation phase. Projective distortion and similar parametric warps have been used

in projector-camera color alignments [24] as well as camera color calibration between

multiple cameras.

The choice of both E(Gk) and T define the energy minimization problem that

must be solved. It should be noted that the framework supports different definitions

of both of these components and further exploration of these terms is an interesting

topic of research.

For notational purposes, we define Gk(t) to be the gamut corresponding to region

k at iteration t. The algorithm takes into account three different gamuts for region k

at each iteration of the relaxation: the measured gamut Gk(0), the current proposed

gamut at iteration i, Gk(i), and the new proposed gamut, Ti+1 Gk(i), warped by a

new transform, Ti+1.

The method begins by computing the energy function for each region in the display

(see Section 3.3) and sorting the list of regions in descending order of energy. The top
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element of this list is selected and a new proposal transform is generated in a two-part

process. First we compute an approximate target gamut (Equation 3.5) by taking a

linear combination of the mean gamut of the neighborhood and the measured gamut.

The weights are (1-α) and α, as discussed above. We then compute, via Equation 3.6

the mean of the translation vectors from corresponding vertices between the current

gamut and the approximate target gamut. We translate the current gamut by this

mean translation vector. This gamut-alignment step is beneficial because simply

using gradient descent without using the mean-vector-translation step is more likely

to encounter local minima.

Gapprox = (1-α)Gk
M + αGk

(3.5)

~t = (1/8)
∑8

j=1(Gapprox[j]−Gk(i)[j])

(3.6)

where G[j] is the homogeneous point corresponding to the jth vertex of gamut G.

Now we need to update our current transform T(i) by the mean translation we have

computed. We do this simply by copying the values from ~t into the rightmost column

of a 4x4 identity matrix, so that we have a pure translation matrix Ttrans. Our

new current matrix is TtransT(i) and our current putative gamut is Gintermediate =

TtransT(i)Gk(0).
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After the relatively large translation, we perform local optimization by first com-

puting the maximum gradient descent defined by the Jacobian of the energy term

with respect to the parameters of the transformation:

~p = ∂E(Gintermediate)
∂T

(3.7)

Given our choice of T, ~p is a 15-dimensional vector describing the direction of

maximum descent. A line search is performed along ~p. We solve our line search

problem by using a technique called Brent’s Method [15]. The solution to the line

search problem is called δ. The minimum value of the energy function is used to

determine the new gamut transform for that region, T(i+1) = TtransT(i) + δ *

unstack(−~p), that maps the region’s gamut to an updated gamut with less energy.

If the new transformation does not, in fact, reduce the energy for the whole

neighborhood, we back out all changes for this iteration and the entire process is

applied to the next region in the sorted list. Note that our goal is to reduce the entire

system’s energy by operating on its current worst member. Checking to see that the

entire system’s energy is reduced is equivalent to checking that the neighborhood’s

energy has been reduced because changing a gamut can only affect the energy of

regions within its neighborhood – no regions outside the neighborhood can possibly be

affected. If the energy measure for any region is reduced, the energy for all regions that

could be impacted by this change (i.e. all regions in the neighborhood) is recomputed

and a new sorted list of gamut regions is computed.

The algorithm then iterates in this manner on each new gamut list as it is produced

until a stopping criterion is reached. For the results here, two stopping criteria are

used. First, if the total energy of the error surface falls below some threshold, the
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relaxation algorithm terminates. The algorithm will also terminate if the energy

difference between the current gamut and the resulting gamut for any region visited

on the current iteration is below a threshold. Figure 3.2 depicts this iterative process

on the input data from Figure 3.1. The number of times a region is visited and

modified is encoded as intensity in Figure 3.2a.

(a) (b)

Figure 3.2: Visualization of the energy relaxation behavior for input images in Figure
3.1. Gamut relaxation operates primarily on discontinuities in the energy surface. (a)
Intensity encodes the number of times a particular region is visited and modified in
the relaxation process. (b) Volume increase is indicated by red, decrease by blue, no
change by green.

Notice that regions on the border of the color artifact are visited more often as

they are corrected, impact the overall energy, and then are revisited. More distant

regions are corrected far less. Figure 3.2b encodes the volume change between the

starting and optimized gamuts. Gamuts on the border of the artifact were reduced

in size to better match their neighbors on the interior of the artifact where the color

dynamic range of the display is reduced.

The choice of particular stopping criterion is related to the error function used as

well as the choice of transformation. For example, if one defines an energy function

based on traits of the human perceptual system, a stopping criterion may be defined

based on the minimum observable change in color gamuts.
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3.5 Correction

(a) (b) (c)

Figure 3.3: Corrected image for the example input image from Figures 1.1- 3.2. (a)
Result of correction as seen from the camera. Because the technique imposes local
smoothness constraints without requiring the entire image to lie within a common
color space. The result image still exhibits good color contrast in regions far from
the aberration. (b) Close-up of corrected areas near the aberration. The yellow color
aberration is less saturated. More importantly, the edge between this region and its
neighbors is less apparent than the uncorrected image. (c) Close-up of uncorrected
image shown for comparison.

After relaxation, we have the final transformations in each region and can apply

them to pixels in the input image. Because we have committed to a space of linear

color space transforms, the resulting transformations can be applied simply by mul-

tiplying incoming color values with the transformation corresponding to the region

in which the pixel lies. For example, given a pixel to be displayed in region k, with

color value of c, a new color value is computed as:

ĉk = T[r g b 1]T

(3.8)

After transformation, the output color values are clamped to the range 0-255 and
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displayed. Figure 3.3 shows the corrected and uncorrected images from the example

shown in Figures 3.1 and 3.2.

Copyright c© Nathaniel Sanders 2007
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Chapter 4

Experimental Results

4.1 System Setup and Composition

The image in Figure 4.1 shows a typical experimental setup. The equipment used to

build the system was

1. Hitachi HV-F31 3-CCD IEEE-1394 camera mounted on tripod transmitting

1024x768 24-bit color RGB still images

2. 2 Optoma H57 DLP projectors with native resolution of 1024x576; DVI in-

put interface; white enhancement turned off; 1 projector used for focused-light

aberrations, 1 used for image display

3. Camera server: Pentium 4 2.8GHz 512 MB RAM, Ethernet, 100GB hard drive

4. Image Projector server: Pentium 4 3.06GHz, 1GB RAM, Ethernet, 100GB hard

drive – all computational operations are performed on this machine

5. Aberration Projector server: Pentium 4 2.8GHz 512 MB RAM, Ethernet, 100GB

hard drive

6. Lamp with a variety of colored bulbs for ambient-light aberrations

The majority of the system is implemented in C++ with OpenGL for 2D render-

ing and Intel’s OpenCV library for matrix math and image loading and saving. The

gradient direction computations are calculated using the GNU Scientific Library and

the gradient length computations are performed using the Brent’s method code from

Numerical Recipes in C [15]. The solver for high dynamic range imaging is a port of
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Figure 4.1: A projector-camera system equipped for image display as well as focused-
light and ambient-light aberrations.

Paul Debevec’s Matlab code to the GNU Octave language. Several utility programs

for managing the large datasets involved in this project, parsing log files, and gener-

ating visualizations of the data were written in combinations of C++, Octave, Perl,

shell scripts, and the ImageMagick command-line utilities. The camera server runs

on Windows and is controlled by using the National Instruments NI-IMAQ API.

4.2 Evaluation

We tested the system for its ability to increase the similarity between gamuts in an

area where an aberration occurred. Figure 4.2(a) shows the black calibration image

displaying a focused-light multi-color curved-line artifact. Figure 4.2(b) shows the

input image we wish to correct.

Selecting a method to interpret the results is not trivial. Attempting to apply

seemingly obvious or standard ways of analyzing results such as SAD/SSD or per-

haps measuring the maximum gradient of the projected image near the aberration

25



www.manaraa.com

is misleading. This is because doing so for a particular parameter set would inad-

vertently evaluate the system operator’s ability to select parameters for a desired

outcome. Instead, we report the percentage of energy decrease across the display and

also take a look at some compelling visualizations of various aspects of the system

and its results.

The system was run to measure initial gamuts and then correct the input image.

In this experiment we used a neighborhood size of 15x15 regions and α = 0.05.

Each region was two pixels by two pixels. After 1000 iterations of the relaxer (near

convergence), we compared the initial energy to the final energy. The energy over the

entire region space in this experiment decreased from 68.2416 units to 36.879 units

for 45.96% decrease in energy. This demonstrates that the technique correctly adjusts

gamuts towards a lower energy state based on the definition of the energy function.

In Figure 4.3(a) and (b) we see the uncorrected and corrected versions of the

images, respectively. This aberration is quite strong in that it cuts a sharp edge

through the display, so it is necessary to zoom in to see where the correction happens.

Figure 4.3(c) and (d) show a close-up of the blue portion of the aberration. Here we

can more easily see the softening of the blue as it it appears more strongly in the

neighborhood around the blue line to soften the edge. It is possible in this case that

if the purpose of this parameter set was to smooth the aberration, a lower value of

α should have been used to weigh the mean gamut more heavily and the measured

gamut less heavily. We may also have benefited from a larger neighborhood size,

which would make the area of effect around the aberration larger.

In Figure 4.4(a), we show the difference image between the camera images of the

two aberrated images (corrected and uncorrected). In this image, the intensities of

the difference have been multiplied by five for emphasis. Here it can be seen that the

correction forms a ”shell” around the aberration which results in a smooth blend from

the aberration to the background. Another visualization that has strong similarities
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to the aforementioned difference image is Figure 4.4(b), however while Figure 4.4(a)

was computed as the pixel-difference between two camera images, Figure 4.4(b) is a

visualization of the black-point translation from the measured (initial) gamuts in each

region to the gamuts after near-convergence (1000 iterations, in this case). In other

words, for each region, we subtracted the initial black point from the final black point

and plotted that 3-vector as RGB values. Gamut movement, in general, is difficult to

visualize because of its 3D nature. In order to more easily understand how the gamuts

have been transformed, we look at black-point-translation vectors or volume scalars

to enable us to make useful inferences about the nature of the data. In this particular

case, there is significant black-point translation, which agrees with intuition, as our

focused-light aberration should, for the most part, simply be additive energy. Inside

the boxed area in Figure 4.4(c), we see that the shell formed around the aberration

is of high intensity near the aberration and decreases with distance.

The last of the visualizations shows the volume in each region both at the time

of measurement and after 1000 iterations. Figure 4.5 shows the ”before” and ”after”

images, respectively, while the image to the right of each larger image shows a close-

up of the volume visualization in the region of aberration. In Figure 4.5(d), we can

see a medium-grey-colored region in between the darkly-colored aberration portion

and the large, lighter-grey-colored unaberrated region. This is where the relaxer

was taking ”normal” gamuts and making them more like the gamuts in the aberrated

region, in accordance with this particular parameter set which decreases energy based

on similarity to a gaussian-weighted mean of neighbors. The bright white specks

apparent in some parts of the transformed area are regions that have grown in volume.

This is an anomalous case that occurs due to local minima.

Table 4.1 shows some values for percent decrease in energy for 3 experiments

with all parameters equal except for α. These experiments used the same aberration

and thus the same input calibration images as the previous experiment. These three

27



www.manaraa.com

experiments show the effect of α on the system. With all other parameters equal,

as alpha gets smaller, percent decrease in energy goes up. This is to be expected,

as gamuts are allowed to change more the smaller α is. If α were 1.00, for example,

gamuts would would achieve their lowest energy state by staying at measured value

and we would have no energy decrease.

Region size α Iterations Neighborhood size % Energy decrease
4 0.05 1000 9x9 47.86%
4 0.2 1000 9x9 45.74%
4 0.6 1000 9x9 39.07%

Table 4.1: Percent energy decrease for a given parameter set

4.3 Limitations

We have demonstrated a system with a solid theoretical framework. However, during

the course of experimentation, we have discovered limitations in our work. The

volume visualizations in Figure 4.5 show that our relaxer allows some gamuts to

grow, which is physically impossible. Also, the amount of correction in Figure 4.3 is

so low as to be difficult to see even when magnified. This is likely due to a sub-optimal

choice of input parameters. More experimentation and better understanding of how

input parameters affect the course of the relaxer will lead to better results.

Copyright c© Nathaniel Sanders 2007
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(a)

(b)

Figure 4.2: (a) The focused-light aberration for this experiment. (b) The unaberrated
input image.
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(a) (b)

(c) (d)

Figure 4.3: Uncorrected and corrected camera images with close-up of aberration
portion. (a)The aberrated/uncorrected version of the input image. (b) The aber-
rated/corrected version of the input image. (c) Blue portion of aberration region of
uncorrected image magnified. (d) Blue portion of aberration region of corrected image
magnified.
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(a) (b) (c)

Figure 4.4: Some visualizations of the process: (a)The difference image (multiplied
by 5 for visualization purposes) between the uncorrected and corrected images in
the region of the aberration. (b) magnification of the black-point translation image
(values multiplied by 5 for visualization purposes) (c) further zoom of black-point
translation image with box emphasizing correction fall-off/smoothness
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(a) (b)

(c) (d)

Figure 4.5: Visualization of volumes of gamuts across all regions (darker color indi-
cates smaller gamut): (a) at measurement time/before correction (b) magnification
before correction (c) after correction (d) magnification after correction
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Chapter 5

Conclusions and Future Work

We have introduced a general system for transforming color in a projected display

environment. To meet this end, we have also contributed two key sub-systems that

measure the non-linear output response of a projector and the color gamut across a

display by using a commodity camera.

The full extent and flexibility of the system certainly could not be captured in

this document alone. The relaxer engine combined with variable region sizes, neigh-

borhood sizes, filters other than a gaussian-weighted mean, and weighting coefficients

create a staggering number of inputs and outputs. Future work on this system should

include a better understanding of how to select input parameters for typical tasks. For

example, how might we select neighborhood size and region size as a function of aber-

ration size? In addition to those more basic questions, future research may attempt to

phrase other researchers’ algorithms or desired ends in terms of our system. Through

weighting coefficients, multiple ends could be balanced in different ways, just as we

balanced between the measured gamut (the data term) and the mean of our neighbors

(the smoothness term) in the basic case in our research. Also, while the work shown

here features relatively small neighborhood sizes, very large neighborhood sizes (per-

haps the size of the entire display) could be used to approximate algorithms which

take into account global information. As an example of this, a very large neighbor-

hood coupled with an order-statistic filter which selects the gamut with least volume

may closely approximate one of the ”greatest common gamut”-style algorithms which

have been discussed by other researchers. The system described here could provide

a test-bed for the creation of new ideas, as well as the hybridization/combination of

existing ideas for color transformation in projection displays.
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